
Topics in fluid mechanics

Problem sheet 0. [2018]

1. The Boussinesq approximation for a stratified flow assumes the density ρ is con-
stant in the equations (ρ = ρ0), except where it occurs in the gravitational buoy-
ancy term −ρgk in the Navier–Stokes momentum equation. A two-dimensional,
Boussinesq fluid flow has velocity u = (u, 0, w), and depends only on the co-
ordinates x and z. Show that there is a stream function ψ satisfying u = ψz,
w = −ψx, and that the vorticity

ω = ∇× u = ∇2ψj,

and thus that
u× ω = (ψx∇2ψ, 0, ψz∇2ψ),

and hence
∇× (u× ω) = (ψx∇2ψz − ψz∇2ψx)j.

Use the vector identity (u .∇)u = ∇(1
2
u2)− u× ω to show that

∇× du

dt
=

[

∇2ψt − ψx∇2ψz + ψz∇2ψx

]

j.

Show also that
∇× ρk = −ρxj,

and use the Cartesian identity

∇2 ≡ grad div − curl curl

to show that
∇×∇2u = ∇4ψ j.

Deduce that the momentum equation can be written in the form

ρ0
[

∇2ψt + ψz∇2ψx − ψx∇2ψz

]

= gρx + µ∇4ψ,

where µ is the viscosity.

2. The Blasius boundary layer

Write down the dimensionless form of the Navier-Stokes equations for an in-
compressible viscous fluid, explaining what the Reynolds number is.

Fluid flows two-dimensionally past a flat plate y = 0, x > 0 at high Reynolds
number Re, such that the dimensionless velocity (u, v) satisfies u = v = 0 on
y = 0, x > 0, and u → 1, v → 0, p → 0 as y → ∞. Show that the outer
(inviscid) flow away from y = 0 is (u, v) = (1, 0), p = 0. Show that a boundary
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layer exists near y = 0, where v ∼ δ, y ∼ δ, where δ = Re−1/2, and show that
the corresponding equations for u and (rescaled) V are

ux + VY = 0,

uux + V uY = uY Y .

By introducing a stream function u = ψY , V = −ψx, deduce that

ψY ψxY − ψxψY Y = ψY Y Y .

Show that a similarity solution of the form ψ = (2x)1/2f(η), η = Y/(2x)1/2,
exists, where f satisfies

f ′′′ + ff ′′ = 0,

f(0) = f ′(0) = 0, f ′(∞) = 1.

f(η) must be found numerically, and in common with many similarity solutions,
there is a trick to do this by rescaling. Solve

F ′′′(ξ) + F (ξ)F ′′(ξ) = 0,

F (0) = F ′(0) = 0, F ′′(0) = 1;

(this can be done easily as an initial value problem, providing (as is the case)
F ′ cannot blow up at ∞)). Put f(η) = bF (aη), and show that the required
solution is obtained by taking

a = b =

√

1

F ′(∞)
.

Sketch the graph of f ′(η). What does it represent?

3. [This is difficult.] A viscous, incompressible fluid of density ρ and mean depth
d flows slowly down a rough surface inclined at an angle α to the horizontal.
The flow is two-dimensional, and is driven by the downslope gravitational ac-
celeration. If (x, z) are cartesian coordinates, with x pointing downslope, write
down the equations of Stokes flow for the pressure p and stream function ψ, in
which the inertial terms are neglected.

If the boundary conditions are of no slip at the base z = b(x) and no normal
stress at the top surface z = s(x, t), σnn+pa = σnt = 0, where pa is atmospheric
pressure, show that we can take

ψ = ψz = 0 at z = b,
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and
(p− pa)(1 + s2x) + 2sxτ13 + (1− s2x)τ11 = 0,

(1− s2x)τ13 − 2sxτ11 = 0 at z = s,

where you should define the normal deviatoric stress τ11 and the shear stress
τ13 in terms of derivatives of ψ.

Write down the kinematic condition for the free surface, and show that it can
be written in the form

st +
∂ψ[x, s(x, t)]

∂x
= 0.

By choosing suitable scales for the reduced pressure p − pa − ρg(s − z) cosα,
stream function ψ, lengths x, z, s, b and time t, show that the equations can be
written in the dimensionless form (the variables are all now dimensionless, in
particular p is the dimensionless reduced pressure)

sx cotα + px = ∇2ψz + 1,

pz = −∇2ψx,

and write down the corresponding dimensionless boundary conditions. Show
that the velocity scale U is given by

U =
ρgd2 sinα

η
,

where η is the viscosity.

Now assume the flow is steady. Show in this case that ψ is constant on z = s.
For the particular case b = 0, find an exact steady solution in which s = 1, and
show that in this case ψ = 1

3
at z = 1.

Next, suppose that b and thus s− 1 are small, and that the downslope volume
flux is prescribed, ψ = 1

3
at z = s. By writing

ψ = 1

2
z2 − 1

6
z3 +Ψ, s = 1 + σ, P = p+ σ cotα,

show that
Px = ∇2Ψz, Pz = −∇2Ψx,

and show that linearised boundary conditions can be taken to be

Ψzz −Ψxx = σ, Ψ+ 1

2
σ = 0, P + 2Ψzx = σ cotα at z = 1,

Ψ = 0, Ψz = −b at z = 0.

Explain how the solution of this problem enables the determination of the sur-
face perturbation σ.
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[For the foolhardy: to solve the problem in terms of Fourier transforms, write
Ψ = f(z)eikx, P = g(z)eikx, b = Beikx, σ = Σeikx, show that g = (f ′′′−k2f ′)/ik,
that f = az cosh kz + (bz + c) sinh kz, and that f ′(0) = −B, and also f ′′(1) +
(k2+2)f(1) = 0, Σ = −2f(1), and f ′′′(1)−3k2f ′(1)+2ikf(1) cotα = 0. Hence
deduce that Σ = KB, where

K =
2 cosh k

1 + k2 + cosh2 k − i cotα

k2
(sinh k cosh k − k)

.

Note that K(0) = 1, as it must (why?)]

4. Write down the equations and boundary conditions suitable to describe the
motion of a layer of incompressible, inviscid fluid of mean depth h subject to a
gravity force in the downwards z direction. Explain what it means for the flow
to be irrotational, and in this case show that there is a velocity potential φ, and
that (if the bed of the fluid is at z = −h and the surface is at z = η)

∇2φ = 0,

φz = 0 at z = −h,
φz = ηt +∇φ.∇η at z = η.

Show that the quantity
p− pa
ρ

+φt +
1

2
|∇φ|2 + gz is constant in the fluid (pa is

atmospheric pressure), and deduce a second boundary condition for the flow if
p = pa at z = η.

A stream of depth h flows at constant speed U in the x direction and is uniform
in the far field (thus φ = Ux, η = 0). Show that these far field conditions define
a uniformly valid solution for φ and η.

Now consider a small disturbance to the flow, so that η and Φ = φ−Ux are small.
By linearising about the uniform state, write down a linear set of differential
equations and boundary conditions for the perturbed velocity potential Φ and
η, and by solving this, derive the dispersion relation relating wave speed c to
wave number k in the form

c = U ±
√

g

k
tanh kh.

Interpret this result physically.

5. Show that the equation describing conservation of mass of a shallow, incom-
pressible, inviscid flow in 0 < z < h is

ht +∇.

[
∫ h

0

u dz

]

= 0,
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where u = (u, v, 0) is the horizontal velocity vector.

Show further that the horizontal component of momentum conservation,

ut + (u .∇)u+ wuz = −1

ρ
∇p,

where w is the vertical component of velocity, and ∇ is the horizontal gradient
vector, together with a hydrostatic balance

p = pa + ρg(h− z),

lead, when integrated from z = 0 to z = h using the kinematic condition

w = ht + u.∇h at z = h,

to the integrated form

∂

∂t

∫ h

0

u dz +∇.

[
∫ h

0

(uu) dz

]

+ gh∇h = 0.

Deduce the (two-dimensional) form of the shallow water equations if it is as-
sumed that u is independent of z.

[The dyadic uu is the tensor with components uiuj, and the divergence of a
tensor σ is the vector with i-th component ∂σij/∂xj, where summation over j
is understood.]

6. A train of (one-dimensional) ocean waves approaches the shore at x = 0 from
x = +∞ over a sloping base at z = −b(x); the undisturbed sea surface is at
z = 0, and the disturbed surface is z = η(x, t), so that the water depth is
h = η + b.

Show that the no flow through condition at z = −b takes the form

w = −ub′.

Derive the shallow water equations from first principles, and show that they
take the form

ht + (hu)x = 0,

ut + uux + gηx = 0.

Hence show that ifm = gb′(x) is constant, the Riemann invariants are u±2c−mt
on ẋ = u± c, where c =

√
gh.

Suppose that at t = 0, u = u0(x) and c = c0(x) = K − 1

2
u0(x). Show that

u+ 2c−mt = 2K everywhere, and deduce that on the negative characteristics
through x = ξ, t = 0, ,

u = u0(ξ) +mt and x = ξ +
[

3

2
u0(ξ)−K

]

t+ 1

2
mt2,
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and deduce that
u = mt+ u0

[

x− 3

2
ut+Kt+mt2

]

.

Hence show that waves will break (i. e., a shock forms) if c′
0
(ξ) > 0 anywhere.

Do these initial conditions make any physical sense?
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